
Robust real-time pupil tracking in highly off-axis images

Lech Świrski∗

University of Cambridge
Andreas Bulling†

University of Cambridge
Neil Dodgson‡

University of Cambridge

Abstract

Robust, accurate, real-time pupil tracking is a key component for
online gaze estimation. On head-mounted eye trackers, existing
algorithms that rely on circular pupils or contiguous pupil regions
fail to detect or accurately track the pupil. This is because the pupil
ellipse is often highly eccentric and partially occluded by eyelashes.
We present a novel, real-time dark-pupil tracking algorithm that is
robust under such conditions. Our approach uses a Haar-like feature
detector to roughly estimate the pupil location, performs a k-means
segmentation on the surrounding region to refine the pupil centre,
and fits an ellipse to the pupil using a novel image-aware Random
Sample Concensus (RANSAC) ellipse fitting. We compare our
approach against existing real-time pupil tracking implementations,
using a set of manually labelled infra-red dark-pupil eye images. We
show that our technique has a higher pupil detection rate and greater
pupil tracking accuracy.

1 Introduction

Although historically research has focused on remote eye-tracking,
there has been a recent trend in algorithms specifically designed
for cheap, webcam-based, head-mounted eye-trackers [Chau and
Betke 2005; San Agustin et al. 2010]. While head-mounting sim-
plifies many tasks such as compensating for head movement, low-
cost systems are likely to have a lower build quality, and therefore
algorithms cannot rely on hardware invariants, such as positions of
lights for glints or calibration of pairs of cameras. Additionally, the
proximity of the cameras in a head-mounted tracker means that they
have to be positioned at a large angle to the visual axis, so as not to
block the user’s gaze. The closer the camera is to the eye, the larger
this angle has to be, which creates novel challenges in detecting the
pupil: the pupil ellipse becomes increasingly eccentric and eyelashes
become increasingly obstructive.

Despite these issues, it can be desirable to mount cameras very close
to the eye. An example is eye-tracking on systems which place an
obstruction in front of the eyes, such as glasses or head-mounted
displays, where the eye camera must be positioned between the
obstruction and the eye (figure 1). In such cases, standard pupil
detection and tracking algorithms fail to find the pupil.

We present a real-time dark-pupil tracking algorithm designed for
low-cost head-mounted active-IR hardware. Our algorithm is robust
to highly eccentric pupil ellipses and partial obstructions from eye-
lashes, making it suitable for use with cameras mounted close to
the eye. It first computes a fast initial approximation of the pupil
position, and the performs a novel RANSAC-based ellipse fitting to
robustly refine this approximation.

∗e-mail: lech.swirski@cl.cam.ac.uk
†e-mail: andreas.bulling@acm.org
‡e-mail: neil.dodgson@cl.cam.ac.uk

obstructed
camera

close-mounted
camera

Figure 1: Glasses in front of the eyes obstructs the view of normal
eye-trackers. A camera mounted between the glasses and the eye
can see the pupil, albeit at a large angle to the viewing axis.

2 Our pupil tracking algorithm

Our approach works in three stages:

1. Approximate the pupil region using a fast, simple feature de-
tection, to reduce the search space in the following stages.

2. Use a k-means histogram segmentation to refine the approxi-
mation of the pupil region, and find an initial approximation to
the pupil centre.

3. Refine the pupil centre and find its elliptical outline, using a
novel ellipse fitting algorithm.

2.1 Initial region estimation

Our initial region estimation assumes that the pupil region, either
the dark pupil itself or the combination of pupil and iris, can roughly
be described as “a dark blob surrounded by a light background”, and
is the strongest such feature in the image. To find the pupil, we use
a Haar-like feature detector, similar to the features used in cascade
classifiers [Viola and Jones 2001].

The core idea of the feature detector can be explained in terms of
convolution. To find possible pupil regions, we convolve the image
with a Haar-like centre-surround feature of a given radius (figure 2).
We repeat this for a set of possible radii, between a user specified
minimum and maximum, and find the strongest response over the
3D space of (x, y) and radii. The (x, y) location of this strongest
response is assumed to be the centre of the pupil region, with the
size of the region determined by the corresponding radius.

Although such a convolution is a slow operation if performed naı̈vely,
we optimise this by first calculating the integral image [Viola and
Jones 2001]. Using this integral image, we can find the response
of a pixel to a Haar-like feature in constant time, only needing to
sample 8 pixel values, one for each corner of the two squares, thereby
making this step linear in the number of pixels and possible radii.

2.2 Kmeans pupil segmentation

The initial region estimation is unlikely to be accurately centred on
the pupil. The Haar-like feature is square, and so is only an approxi-
mation to the elliptical pupil shape. Furthermore, the magnitude of
the response will be similar regardless of where the pupil is in the
inner square, so the feature is unlikely to be centred on the pupil.

r

3r

Haar-like
feature

∗ =

Figure 2: To find the approximate pupil region, the eye image is
convolved with a Haar-like centre surround feature of radius r. The
pupil region is centred on the location of the maximal response over
all pixels and radii.

(a) Pupil region (b) Region histogram (c) Segmented pupil

Figure 3: The pupil region (a) is segmented using k-means cluster-
ing of its histogram (b). The largest black region in the resulting
segmented image is assumed to be the pupil (c).

Hence, in the next stage, we approximate the pupil location within
this region (figure 3).

A common approch in real-time pupil detection is to assume that
the pupil is the darkest element in the image, and find it by applying
intensity thresholding to the image. The value of the threshold is
critical to the performance of the pupil tracker, but it is often simply
a free parameter of the algorithm, and hence affected by changes in
illumination or camera settings. Instead of this manual parameter
setting, we wish to have a fully automatic threshold calculation,
which adapts to such changes.

We choose to consider this as an intensity-based image segmentation
problem. Our approach is to segment the image histogram into two
clusters, corresponding to pupil and background intensity values.
We use k-means clustering on the histogram of the pupil region
to find two clusters: dark and light (figure 3b). The dark cluster
is then assumed to correspond to the pupil pixels, and we create
a segmented binary image of the pupil region by thresholding any
pixels above the maximum intensity in the dark cluster.

Finally, we find connected components in the segmented image
[Chang et al. 2004], and select the largest to be the pupil. The centre
of mass of this component approximates the pupil position.

This k-means segmentation is a fast and simple approach to segment
the pupil region, chosen for its simplicity and natural equivalence
with thresholding. We could have used other approaches, such as
fitting Gaussian mixture models (GMMs) to the histogram, or using
graph cuts [Boykov and Jolly 2001], however, we found that such
techniques did not offer a sufficient improvement on the position
estimate to justify their increased computational cost. Furthermore,
although such techniques could offer a more accurate segmentation
where the pupil is visible, the presence of occlusions would still
require the position estimate to be further refined.

2.3 Pupil ellipse fitting

The final stage of our algorithm refines the pupil position estimate
using an ellipse-fitting approach. Ellipse fitting is a common refine-

(a) Pupil region (b) Morphological open (c) Canny edges

Figure 4: The refined pupil region (a) is preprocessed using a
morphological ‘open’ operation, which removes small occlusions
and noise (b). This opened image is then passed through a Canny
edge detector (c).

ment method in pupil tracking techniques [Hansen and Ji 2010]; our
approach is inspired in particular by Starburst [Li et al. 2005].

We once again consider only the pupil region, centred around the
current pupil position estimate. We find the pupil in this region
by fitting an ellipse to the boundary between the pupil and the iris.
To do this, we preprocess the image to create an edge image and
robustly fit an ellipse to the edge points while ignoring any outliers.

2.3.1 Image preprocessing

To remove features such as eyelashes and glints, we first perform
a morphological ‘open’ operation, which closes small bright gaps
in the otherwise dark pupil region, without significantly affecting
the pupil’s contour (figure 4b). Although morphological operations
would be prohibitively computationally expensive if done on the
entire image, performing them on the pupil sub-region is acceptable.

We then find the boundary between pupil and iris using a Canny edge
detector (figure 4c). We used thresholds of 30 and 50 as parameters
to the edge detector, although we found that any thresholds within a
similar order of magnitude gave equally good results across all the
datasets we tried, due to the high contrast between pupil and iris.

2.3.2 Robust ellipse fitting

In the final stage, we fit an ellipse to the edge pixels. An ellipse
can be fitted to any set of five or more points using a direct least
squares method [Fitzgibbon et al. 1999], however there are likely to
be pixels in the edge image which do not correspond to the pupil
boundary, due to image noise, occlusions, or other strong features
such as eyelids and the limbus. A least-squares technique will be
strongly affected by such outliers, so we require a technique which
will fit an ellipse to the pupil edge while being robust to outliers.

There are two main methods of robustly fitting ellipses to data: vot-
ing-based methods, such as the Hough transform, and searching-
based methods, such as Random Sample Consensus (RANSAC) [Fis-
chler and Bolles 1981]. Voting-based methods are exhaustive, but
computationally expensive. Searching-based methods instead test
a subset of possible ellipses, and select the best. A classic example
is RANSAC, which is a generic model-fitting approach. RANSAC
finds the best model for a set of data by repeatedly minimally sam-
pling the data, fitting a model to the sample, and calculating the
support for that model. The resulting best fit is the model with
maximal support.

Our technique uses RANSAC to fit an elliptical model to the edge
points, and we introduce a novel image-aware support function
which reduces the support of ellipses not aligned with the pupil in
the image. For each RANSAC iteration, we use the direct least
squares method [Fitzgibbon et al. 1999] on a minimal sample of

(a) Sample ellipse fit (b) Inlier ellipse fit (c) Inlier gradients

Figure 5: In each RANSAC iteration, we sample 5 random edge
points and fit an ellipse to them (a). We then find inliers to this
ellipse fit, and refit the ellipse (b). The quality of the fit is found
by finding the image gradient at each inlier (c), and summing the
magnitude of the gradients in the direction orthogonal to the ellipse.

five points (figure 5a). The standard RANSAC support function
then finds inliers to the model fit using a threshold on some error
function— in this case, a set of points which are sufficiently close to
the boundary of the ellipse (figure 5b)— and calculates support as
the size of the set of inliers. Finding the Euclidean distance of a point
from the boundary of an ellipse is a non-trivial operation, involving
solving a quartic equation; instead, we use an approximation. We
represent the ellipse by its conic equation,

Q(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F (1)

where the ellipse is the isocontour at 0. The error function we use is
EOF2 from Rosin’s survey [1996], defined as

error(Q, x, y) = α
Q(x, y)

|∇Q(x, y)| (2)

where α normalises the values of error(x, y) so that the error of
being one pixel away from the minor axis of the ellipse is set to 1.
The set of inliers is thus defined as:

inliers = { (x, y) | error(Q, x, y) < ε } (3)

This is the approach taken by most ellipse fitting algorithms. How-
ever, we notice that we want our ellipse to lie on a boundary from
dark pixels to light pixels, and hence wish to prefer such ellipses.
Furthermore, strong image edges are more likely to be part of the
pupil contour, therefore we wish to prefer ellipses lying along strong
edges. We therefore wish to have an image-aware support function
which takes these into account.

We define our support function as

support(Q, I, inliers) =
∑

(x,y)∈inliers

∇Q(x, y)

|∇Q(x, y)| ·∇I(x, y) (4)

This support function still has a preference for large sets of inliers.
However, it adds weight to inliers where the direction of the el-
lipse gradient ∇Q(x, y) agrees with the image gradient ∇I(x, y),
and adds negative weight if the gradients oppose. Furthermore, it
strengthens this weight where the magnitude of the image gradient
is large (figure 5c).

We make three additional changes to the RANSAC algorithm. Firstly,
we add an early rejection step for the initial five point sample, if the
five points’ ellipse gradients do not agree with the image gradients.
Secondly, we noticed that an ellipse fit to a poor sample will still find
sufficient inliers to provide a good fit. Hence, we iterate the ellipse
fitting and inlier selection step, which increases the likelihood that a
given sample will result in a good fit, and allows us to perform fewer

Algorithm 1 Our image-aware approach to fit an ellipse to a set of
points in an image, using N iterations and an inlier threshold of ε.

procedure RANSAC-ELLIPSE-FIT(points, image, N, ε)
best-ellipse← null
best-support← − inf

// Perform N RANSAC iterations
repeat N times

sample← RANDOM-SAMPLE(points, 5)
ellipse← FIT-ELLIPSE(sample)

// Early sample rejection
if ∃(x, y) ∈ sample where

∇ellipse(x, y) ·∇image(x, y) ≤ 0 then
continue // reject sample, skip this iteration

end if

// Iteratively refine inliers (we use M = 2)
repeat M times

inliers = { (x, y) ∈ points | error(ellipse, x, y) < ε }
ellipse← FIT-ELLIPSE(inliers)

end repeat

// Calculate the support of the ellipse
support← support(ellipse, image, inliers)
if support > best-support then

best-ellipse← ellipse
best-support← support

end if

// Early termination for ≥ 95% inliers
if |inliers| ≥ 0.95 · |points| then

break
end if

end repeat

return best-ellipse
end procedure

RANSAC iterations. Finally, as is common in RANSAC algorithms,
we perform an early termination if our inlier set is sufficiently large—
we used 95% of the size of the input point set.

Our final robust, image-aware ellipse fitting algorithm is described in
algorithm 1. Internally, we still use the direct least-squares approach
to ellipse fitting, however performing this ellipse fitting on only
inliers ensures that the overall fit is robust.

2.4 Evaluation

We evaluate the pixel accuracy of the pupil ellipse fit by comparing
against ground-truth data. For the ground truth, we use 600 hand-
labelled eye images. The eye images were obtained as a uniformly
random subset of left and right eye videos from two people, collected
using a head-mounted camera system. These were labelled by fitting
an ellipse to 5 or more manually selected points along the pupil
boundary, discarding any images where the pupil is not visible. This
data set is publically available1.

To compare our ellipse fit to the ground truth, we used the Hausdorff
distance between the two ellipses. The Hausdorff distance between
two ellipses finds the maximum Euclidean distance of one ellipse to
any point on the other ellipse; in our case, we discretely approximate

1http://www.cl.cam.ac.uk/research/rainbow/projects/pupiltracking/

http://www.cl.cam.ac.uk/research/rainbow/projects/pupiltracking/

0 2 4 6 8 10
0

20

40

60

80

100

Our approach

ITU

Starburst

Error threshold (pixels)

D
et

ec
tio

n
ra

te
(%

)

(a) Detection rate

0 50 100 150
0

5

10

15

Without edge
pixel filtering

With edge
pixel filtering

Framerate (fps)

M
ea

n
er

ro
r(

pi
xe

ls
)

(b) Framerate of our approach

Figure 6: (a): detection rate of our approach compared to existing
approaches. (b): mean error vs. framerate of our approach, with
image-aware support (solid lines) and without (dashed lines).

this by selecting 100 evenly spaced points along each ellipse. Note
that we used the exact Euclidean pupil–ellipse distance rather than
the approximate Euclidean distance used in our algorithm (eq. 2).

We also compared our approach to the publicly available implemen-
tation of Starburst [Li et al. 2005], and our own re-implementation
of the pupil tracker from the ITU Gaze Tracker [San Agustin et al.
2010]. The latter technique finds a pupil region, and returns the
centre of mass of the region as the pupil location— we extended this
to provide a pupil ellipse by fitting an ellipse to the second moments
of the region. Both of these techniques use a threshold parameter—
in Starburst it is the edge threshold, in the ITU Gaze Tracker it is an
intensity threshold. We adjusted the value of the threshold for each
image sequence, to optimise the result.

We compare these three approaches by calculating the pupil detec-
tion rate, for various ellipse error thresholds. Figure 6a shows the
result of this comparison. Our approach has a much higher detection
rate, of over 87% on our data set within an error threshold of 5 pixels.
To compare, the ITU Gaze Tracker has a detection rate of 40%, and
Starburst less than 15%.

To evaluate the trade-off between framerate and accuracy, we ran
our approach adjusting the number of RANSAC iterations. More
iterations are more likely to give a better fit, however also increase
the execution time, decreasing framerate.

We ran the evaluation both on our approach as described, and on
an implementation which replaced the image-aware support func-
tion (eq. 4) with the standard number-of-inliers support function.
Additionally, we ran the evaluation on an implementation which
added an edge pixel selection step (similar to Starburst’s) between
the image processing and RANSAC stages, again both with image-
aware support and with number-of-inliers support. The framerate
was calculated from the execution time on video data, using a C++
implementation on a quad-core 2.80GHz CPU.

Figure 6b demonstrates this comparison. Our novel image-aware
support function consistently achieves a lower mean error than using
the number-of-inliers support, regardless of whether we include
the edge pixel selection step. Furthermore, our approach has a
clear trade-off between framerate and accuracy. For webcam-based
systems, with framerates of 30–60 fps, or offline systems with lower
framerate, our approach (blue) outperforms the edge pixel filtering
variation (orange). This is because we can find “difficult” ellipses
where the edge point selection fails to select inlier points. For
extremely high framerate systems, above 60 fps, the edge pixel
filtering variation achieves a lower mean error than our approach
alone, as it filters out a large number of outliers, increasing the
probability that a given sample will consist of only inliers.

Figure 7: Example results of our approach on difficult images from
our evaluation data set.

3 Conclusion

We have presented a novel pupil-tracking algorithm which is robust
to occlusions such as eyelashes, and to the highly elliptical pupil
shape caused by mounting a camera close to the eye (figure 7). Our
major contributions are:

• A fast pupil position approximation using Haar-like features.
• Using a k-means segmentation approach for automatically

selecting a pupil threshold.
• A novel formulation of RANSAC ellipse fitting, which robustly

fits an ellipse to a set of 2D points using image data.
• A publically available data set and ellipse distance metric for

evaluating pupil ellipse fitting.

We evaluated our approach using a hand-labelled ground truth data
set, and we have shown that our approach is robust and accurate at
real time framerates, and can increase its robustness and accuracy
for offline analysis.

References

BOYKOV, Y. Y., AND JOLLY, M.-P. 2001. Interactive graph cuts
for optimal boundary & region segmentation of objects in N-D
images. In Proc. ICCV, 105–112.

CHANG, F., CHEN, C.-J., AND LU, C.-J. 2004. A linear-time
component-labeling algorithm using contour tracing technique.
Computer Vision and Image Understanding 93, 2, 206–220.

CHAU, M., AND BETKE, M. 2005. Real Time Eye Tracking and
Blink Detection with USB Cameras. Tech. rep., Boston University
Computer Science.

FISCHLER, M. A., AND BOLLES, R. C. 1981. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications of
the ACM 24, 6 (June), 381–395.

FITZGIBBON, A., PILU, M., AND FISHER, R. B. 1999. Direct
least square fitting of ellipses. IEEE TPAMI 21, 5, 476–480.

HANSEN, D. W., AND JI, Q. 2010. In the eye of the beholder: a
survey of models for eyes and gaze. IEEE TPAMI 32, 3, 478–500.

LI, D., WINFIELD, D., AND PARKHURST, D. J. 2005. Starburst: A
hybrid algorithm for video-based eye tracking combining feature-
based and model-based approaches. In Proc. IEEE Vision for
Human-Computer Interaction Workshop, 1–8.

ROSIN, P. L. 1996. Analysing error of fit functions for ellipses.
Pattern Recognition Letters 17, 14, 1461–1470.

SAN AGUSTIN, J., SKOVSGAARD, H., MOLLENBACH, E., BAR-
RET, M., TALL, M., HANSEN, D. W., AND HANSEN, J. P. 2010.
Evaluation of a low-cost open-source gaze tracker. In Proc. ETRA,
77–80.

VIOLA, P., AND JONES, M. 2001. Rapid object detection using a
boosted cascade of simple features. In Proc. CVPR, I–511–I–518.

